cached/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
/*!
[](https://github.com/jaemk/cached/actions/workflows/build.yml)
[](https://crates.io/crates/cached)
[](https://docs.rs/cached)
> Caching structures and simplified function memoization
`cached` provides implementations of several caching structures as well as a handy macros
for defining memoized functions.
Memoized functions defined using [`#[cached]`](proc_macro::cached)/[`#[once]`](proc_macro::once)/[`#[io_cached]`](proc_macro::io_cached)/[`cached!`](crate::macros) macros are thread-safe with the backing
function-cache wrapped in a mutex/rwlock, or externally synchronized in the case of `#[io_cached]`.
By default, the function-cache is **not** locked for the duration of the function's execution, so initial (on an empty cache)
concurrent calls of long-running functions with the same arguments will each execute fully and each overwrite
the memoized value as they complete. This mirrors the behavior of Python's `functools.lru_cache`. To synchronize the execution and caching
of un-cached arguments, specify `#[cached(sync_writes = true)]` / `#[once(sync_writes = true)]` (not supported by `#[io_cached]`.
- See [`cached::stores` docs](https://docs.rs/cached/latest/cached/stores/index.html) cache stores available.
- See [`proc_macro`](https://docs.rs/cached/latest/cached/proc_macro/index.html) for more procedural macro examples.
- See [`macros`](https://docs.rs/cached/latest/cached/macros/index.html) for more declarative macro examples.
**Features**
- `default`: Include `proc_macro` and `ahash` features
- `proc_macro`: Include proc macros
- `ahash`: Enable the optional `ahash` hasher as default hashing algorithm.
- `async`: Include support for async functions and async cache stores
- `async_tokio_rt_multi_thread`: Enable `tokio`'s optional `rt-multi-thread` feature.
- `redis_store`: Include Redis cache store
- `redis_async_std`: Include async Redis support using `async-std` and `async-std` tls support, implies `redis_store` and `async`
- `redis_tokio`: Include async Redis support using `tokio` and `tokio` tls support, implies `redis_store` and `async`
- `redis_connection_manager`: Enable the optional `connection-manager` feature of `redis`. Any async redis caches created
will use a connection manager instead of a `MultiplexedConnection`
- `redis_ahash`: Enable the optional `ahash` feature of `redis`
- `disk_store`: Include disk cache store
- `wasm`: Enable WASM support. Note that this feature is incompatible with `tokio`'s multi-thread
runtime (`async_tokio_rt_multi_thread`) and all Redis features (`redis_store`, `redis_async_std`, `redis_tokio`, `redis_ahash`)
The procedural macros (`#[cached]`, `#[once]`, `#[io_cached]`) offer more features, including async support.
See the [`proc_macro`](crate::proc_macro) and [`macros`](crate::macros) modules for more samples, and the
[`examples`](https://github.com/jaemk/cached/tree/master/examples) directory for runnable snippets.
Any custom cache that implements `cached::Cached`/`cached::CachedAsync` can be used with the `#[cached]`/`#[once]`/`cached!` macros in place of the built-ins.
Any custom cache that implements `cached::IOCached`/`cached::IOCachedAsync` can be used with the `#[io_cached]` macro.
----
The basic usage looks like:
```rust,no_run
use cached::proc_macro::cached;
/// Defines a function named `fib` that uses a cache implicitly named `FIB`.
/// By default, the cache will be the function's name in all caps.
/// The following line is equivalent to #[cached(name = "FIB", unbound)]
#[cached]
fn fib(n: u64) -> u64 {
if n == 0 || n == 1 { return n }
fib(n-1) + fib(n-2)
}
# pub fn main() { }
```
----
```rust,no_run
use std::thread::sleep;
use std::time::Duration;
use cached::proc_macro::cached;
use cached::SizedCache;
/// Use an explicit cache-type with a custom creation block and custom cache-key generating block
#[cached(
ty = "SizedCache<String, usize>",
create = "{ SizedCache::with_size(100) }",
convert = r#"{ format!("{}{}", a, b) }"#
)]
fn keyed(a: &str, b: &str) -> usize {
let size = a.len() + b.len();
sleep(Duration::new(size as u64, 0));
size
}
# pub fn main() { }
```
----
```rust,no_run
use cached::proc_macro::once;
/// Only cache the initial function call.
/// Function will be re-executed after the cache
/// expires (according to `time` seconds).
/// When no (or expired) cache, concurrent calls
/// will synchronize (`sync_writes`) so the function
/// is only executed once.
#[once(time=10, option = true, sync_writes = true)]
fn keyed(a: String) -> Option<usize> {
if a == "a" {
Some(a.len())
} else {
None
}
}
# pub fn main() { }
```
----
```compile_fail
use cached::proc_macro::cached;
/// Cannot use sync_writes and result_fallback together
#[cached(
result = true,
time = 1,
sync_writes = true,
result_fallback = true
)]
fn doesnt_compile() -> Result<String, ()> {
Ok("a".to_string())
}
```
----
```rust,no_run,ignore
use cached::proc_macro::io_cached;
use cached::AsyncRedisCache;
use thiserror::Error;
#[derive(Error, Debug, PartialEq, Clone)]
enum ExampleError {
#[error("error with redis cache `{0}`")]
RedisError(String),
}
/// Cache the results of an async function in redis. Cache
/// keys will be prefixed with `cache_redis_prefix`.
/// A `map_error` closure must be specified to convert any
/// redis cache errors into the same type of error returned
/// by your function. All `io_cached` functions must return `Result`s.
#[io_cached(
map_error = r##"|e| ExampleError::RedisError(format!("{:?}", e))"##,
ty = "AsyncRedisCache<u64, String>",
create = r##" {
AsyncRedisCache::new("cached_redis_prefix", 1)
.set_refresh(true)
.build()
.await
.expect("error building example redis cache")
} "##
)]
async fn async_cached_sleep_secs(secs: u64) -> Result<String, ExampleError> {
std::thread::sleep(std::time::Duration::from_secs(secs));
Ok(secs.to_string())
}
```
----
```rust,no_run,ignore
use cached::proc_macro::io_cached;
use cached::DiskCache;
use thiserror::Error;
#[derive(Error, Debug, PartialEq, Clone)]
enum ExampleError {
#[error("error with disk cache `{0}`")]
DiskError(String),
}
/// Cache the results of a function on disk.
/// Cache files will be stored under the system cache dir
/// unless otherwise specified with `disk_dir` or the `create` argument.
/// A `map_error` closure must be specified to convert any
/// disk cache errors into the same type of error returned
/// by your function. All `io_cached` functions must return `Result`s.
#[io_cached(
map_error = r##"|e| ExampleError::DiskError(format!("{:?}", e))"##,
disk = true
)]
fn cached_sleep_secs(secs: u64) -> Result<String, ExampleError> {
std::thread::sleep(std::time::Duration::from_secs(secs));
Ok(secs.to_string())
}
```
Functions defined via macros will have their results cached using the
function's arguments as a key, a `convert` expression specified on a procedural macros,
or a `Key` block specified on a `cached_key!` declarative macro.
When a macro-defined function is called, the function's cache is first checked for an already
computed (and still valid) value before evaluating the function body.
Due to the requirements of storing arguments and return values in a global cache:
- Function return types:
- For all store types, except Redis, must be owned and implement `Clone`
- For the Redis store type, must be owned and implement `serde::Serialize + serde::DeserializeOwned`
- Function arguments:
- For all store types, except Redis, must either be owned and implement `Hash + Eq + Clone`,
the `cached_key!` macro is used with a `Key` block specifying key construction, or
a `convert` expression is specified on a procedural macro to specify how to construct a key
of a `Hash + Eq + Clone` type.
- For the Redis store type, must either be owned and implement `Display`, or the `cached_key!` & `Key`
or procedural macro & `convert` expression used to specify how to construct a key of a `Display` type.
- Arguments and return values will be `cloned` in the process of insertion and retrieval. Except for Redis
where arguments are formatted into `Strings` and values are de/serialized.
- Macro-defined functions should not be used to produce side-effectual results!
- Macro-defined functions cannot live directly under `impl` blocks since macros expand to a
`once_cell` initialization and one or more function definitions.
- Macro-defined functions cannot accept `Self` types as a parameter.
*/
#![cfg_attr(docsrs, feature(doc_cfg))]
#[doc(hidden)]
pub extern crate once_cell;
#[cfg(feature = "proc_macro")]
#[cfg_attr(docsrs, doc(cfg(feature = "proc_macro")))]
pub use proc_macro::Return;
#[cfg(any(feature = "redis_async_std", feature = "redis_tokio"))]
#[cfg_attr(
docsrs,
doc(cfg(any(feature = "redis_async_std", feature = "redis_tokio")))
)]
pub use stores::AsyncRedisCache;
pub use stores::{
CanExpire, ExpiringValueCache, SizedCache, TimedCache, TimedSizedCache, UnboundCache,
};
#[cfg(feature = "disk_store")]
#[cfg_attr(docsrs, doc(cfg(feature = "disk_store")))]
pub use stores::{DiskCache, DiskCacheError};
#[cfg(feature = "redis_store")]
#[cfg_attr(docsrs, doc(cfg(feature = "redis_store")))]
pub use stores::{RedisCache, RedisCacheError};
#[cfg(feature = "async")]
#[cfg_attr(docsrs, doc(cfg(feature = "async")))]
use {async_trait::async_trait, futures::Future};
mod lru_list;
pub mod macros;
#[cfg(feature = "proc_macro")]
pub mod proc_macro;
pub mod stores;
#[doc(hidden)]
pub use web_time;
#[cfg(feature = "async")]
#[doc(hidden)]
pub mod async_sync {
pub use tokio::sync::Mutex;
pub use tokio::sync::OnceCell;
pub use tokio::sync::RwLock;
}
/// Cache operations
///
/// ```rust
/// use cached::{Cached, UnboundCache};
///
/// let mut cache: UnboundCache<String, String> = UnboundCache::new();
///
/// // When writing, keys and values are owned:
/// cache.cache_set("key".to_string(), "owned value".to_string());
///
/// // When reading, keys are only borrowed for lookup:
/// let borrowed_cache_value = cache.cache_get("key");
///
/// assert_eq!(borrowed_cache_value, Some(&"owned value".to_string()))
/// ```
pub trait Cached<K, V> {
/// Attempt to retrieve a cached value
///
/// ```rust
/// # use cached::{Cached, UnboundCache};
/// # let mut cache: UnboundCache<String, String> = UnboundCache::new();
/// # cache.cache_set("key".to_string(), "owned value".to_string());
/// // You can use borrowed data, or the data's borrowed type:
/// let borrow_lookup_1 = cache.cache_get("key")
/// .map(String::clone);
/// let borrow_lookup_2 = cache.cache_get(&"key".to_string())
/// .map(String::clone); // copy the values for test asserts
///
/// # assert_eq!(borrow_lookup_1, borrow_lookup_2);
/// ```
fn cache_get<Q>(&mut self, k: &Q) -> Option<&V>
where
K: std::borrow::Borrow<Q>,
Q: std::hash::Hash + Eq + ?Sized;
/// Attempt to retrieve a cached value with mutable access
///
/// ```rust
/// # use cached::{Cached, UnboundCache};
/// # let mut cache: UnboundCache<String, String> = UnboundCache::new();
/// # cache.cache_set("key".to_string(), "owned value".to_string());
/// // You can use borrowed data, or the data's borrowed type:
/// let borrow_lookup_1 = cache.cache_get_mut("key")
/// .map(|value| value.clone());
/// let borrow_lookup_2 = cache.cache_get_mut(&"key".to_string())
/// .map(|value| value.clone()); // copy the values for test asserts
///
/// # assert_eq!(borrow_lookup_1, borrow_lookup_2);
/// ```
fn cache_get_mut<Q>(&mut self, k: &Q) -> Option<&mut V>
where
K: std::borrow::Borrow<Q>,
Q: std::hash::Hash + Eq + ?Sized;
/// Insert a key, value pair and return the previous value
fn cache_set(&mut self, k: K, v: V) -> Option<V>;
/// Get or insert a key, value pair
fn cache_get_or_set_with<F: FnOnce() -> V>(&mut self, k: K, f: F) -> &mut V;
/// Get or insert a key, value pair with error handling
fn cache_try_get_or_set_with<F: FnOnce() -> Result<V, E>, E>(
&mut self,
k: K,
f: F,
) -> Result<&mut V, E>;
/// Remove a cached value
///
/// ```rust
/// # use cached::{Cached, UnboundCache};
/// # let mut cache: UnboundCache<String, String> = UnboundCache::new();
/// # cache.cache_set("key1".to_string(), "owned value 1".to_string());
/// # cache.cache_set("key2".to_string(), "owned value 2".to_string());
/// // You can use borrowed data, or the data's borrowed type:
/// let remove_1 = cache.cache_remove("key1");
/// let remove_2 = cache.cache_remove(&"key2".to_string());
///
/// # assert_eq!(remove_1, Some("owned value 1".to_string()));
/// # assert_eq!(remove_2, Some("owned value 2".to_string()));
/// ```
fn cache_remove<Q>(&mut self, k: &Q) -> Option<V>
where
K: std::borrow::Borrow<Q>,
Q: std::hash::Hash + Eq + ?Sized;
/// Remove all cached values. Keeps the allocated memory for reuse.
fn cache_clear(&mut self);
/// Remove all cached values. Free memory and return to initial state
fn cache_reset(&mut self);
/// Reset misses/hits counters
fn cache_reset_metrics(&mut self) {}
/// Return the current cache size (number of elements)
fn cache_size(&self) -> usize;
/// Return the number of times a cached value was successfully retrieved
fn cache_hits(&self) -> Option<u64> {
None
}
/// Return the number of times a cached value was unable to be retrieved
fn cache_misses(&self) -> Option<u64> {
None
}
/// Return the cache capacity
fn cache_capacity(&self) -> Option<usize> {
None
}
/// Return the lifespan of cached values (time to eviction)
fn cache_lifespan(&self) -> Option<u64> {
None
}
/// Set the lifespan of cached values, returns the old value
fn cache_set_lifespan(&mut self, _seconds: u64) -> Option<u64> {
None
}
/// Remove the lifespan for cached values, returns the old value.
///
/// For cache implementations that don't support retaining values indefinitely, this method is
/// a no-op.
fn cache_unset_lifespan(&mut self) -> Option<u64> {
None
}
}
/// Extra cache operations for types that implement `Clone`
pub trait CloneCached<K, V> {
/// Attempt to retrieve a cached value and indicate whether that value was evicted.
fn cache_get_expired<Q>(&mut self, _key: &Q) -> (Option<V>, bool)
where
K: std::borrow::Borrow<Q>,
Q: std::hash::Hash + Eq + ?Sized;
}
#[cfg(feature = "async")]
#[cfg_attr(docsrs, doc(cfg(feature = "async")))]
#[async_trait]
pub trait CachedAsync<K, V> {
async fn get_or_set_with<F, Fut>(&mut self, k: K, f: F) -> &mut V
where
V: Send,
F: FnOnce() -> Fut + Send,
Fut: Future<Output = V> + Send;
async fn try_get_or_set_with<F, Fut, E>(&mut self, k: K, f: F) -> Result<&mut V, E>
where
V: Send,
F: FnOnce() -> Fut + Send,
Fut: Future<Output = Result<V, E>> + Send;
}
/// Cache operations on an io-connected store
pub trait IOCached<K, V> {
type Error;
/// Attempt to retrieve a cached value
///
/// # Errors
///
/// Should return `Self::Error` if the operation fails
fn cache_get(&self, k: &K) -> Result<Option<V>, Self::Error>;
/// Insert a key, value pair and return the previous value
///
/// # Errors
///
/// Should return `Self::Error` if the operation fails
fn cache_set(&self, k: K, v: V) -> Result<Option<V>, Self::Error>;
/// Remove a cached value
///
/// # Errors
///
/// Should return `Self::Error` if the operation fails
fn cache_remove(&self, k: &K) -> Result<Option<V>, Self::Error>;
/// Set the flag to control whether cache hits refresh the ttl of cached values, returns the old flag value
fn cache_set_refresh(&mut self, refresh: bool) -> bool;
/// Return the lifespan of cached values (time to eviction)
fn cache_lifespan(&self) -> Option<u64> {
None
}
/// Set the lifespan of cached values, returns the old value.
fn cache_set_lifespan(&mut self, _seconds: u64) -> Option<u64> {
None
}
/// Remove the lifespan for cached values, returns the old value.
///
/// For cache implementations that don't support retaining values indefinitely, this method is
/// a no-op.
fn cache_unset_lifespan(&mut self) -> Option<u64> {
None
}
}
#[cfg(feature = "async")]
#[cfg_attr(docsrs, doc(cfg(feature = "async")))]
#[async_trait]
pub trait IOCachedAsync<K, V> {
type Error;
async fn cache_get(&self, k: &K) -> Result<Option<V>, Self::Error>;
async fn cache_set(&self, k: K, v: V) -> Result<Option<V>, Self::Error>;
/// Remove a cached value
async fn cache_remove(&self, k: &K) -> Result<Option<V>, Self::Error>;
/// Set the flag to control whether cache hits refresh the ttl of cached values, returns the old flag value
fn cache_set_refresh(&mut self, refresh: bool) -> bool;
/// Return the lifespan of cached values (time to eviction)
fn cache_lifespan(&self) -> Option<u64> {
None
}
/// Set the lifespan of cached values, returns the old value
fn cache_set_lifespan(&mut self, _seconds: u64) -> Option<u64> {
None
}
/// Remove the lifespan for cached values, returns the old value.
///
/// For cache implementations that don't support retaining values indefinitely, this method is
/// a no-op.
fn cache_unset_lifespan(&mut self) -> Option<u64> {
None
}
}