lexical_write_integer/radix.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
//! Radix-generic, lexical integer-to-string conversion routines.
//!
//! These routines are decently optimized: they unroll 4 loops at a time,
//! using pre-computed base^2 tables. However, due to static storage
//! reasons, it makes no sense to pre-compute the number of digits,
//! and therefore
//!
//! See [Algorithm.md](/docs/Algorithm.md) for a more detailed description of
//! the algorithm choice here.
#![cfg(not(feature = "compact"))]
#![cfg(feature = "power-of-two")]
#![doc(hidden)]
use crate::algorithm::{algorithm, algorithm_u128};
use crate::table::get_table;
use core::mem;
use lexical_util::algorithm::copy_to_dst;
use lexical_util::format;
use lexical_util::num::{Integer, UnsignedInteger};
/// Write integer to radix string.
pub trait Radix: UnsignedInteger {
/// # Safety
///
/// Safe as long as buffer is at least `FORMATTED_SIZE` elements long,
/// (or `FORMATTED_SIZE_DECIMAL` for decimal), and the radix is valid.
unsafe fn radix<const FORMAT: u128, const MASK: u128, const SHIFT: i32>(
self,
buffer: &mut [u8],
) -> usize;
}
// Don't implement radix for small types, where we could have an overflow.
macro_rules! radix_unimpl {
($($t:ty)*) => ($(
impl Radix for $t {
#[inline(always)]
unsafe fn radix<const __: u128, const ___: u128, const ____: i32>(self, _: &mut [u8]) -> usize {
// Forces a hard error if we have a logic error in our code.
unimplemented!()
}
}
)*);
}
radix_unimpl! { u8 u16 usize }
// Implement radix for type.
macro_rules! radix_impl {
($($t:ty)*) => ($(
impl Radix for $t {
#[inline(always)]
unsafe fn radix<const FORMAT: u128, const MASK: u128, const SHIFT: i32>(
self,
buffer: &mut [u8]
) -> usize {
// SAFETY: safe as long as buffer is large enough to hold the max value.
// We never read unwritten values, and we never assume the data is initialized.
debug_assert!(<Self as Integer>::BITS <= 64);
let mut digits: mem::MaybeUninit<[u8; 64]> = mem::MaybeUninit::uninit();
unsafe {
let digits = &mut *digits.as_mut_ptr();
let radix = format::radix_from_flags(FORMAT, MASK, SHIFT);
let table = get_table::<FORMAT, MASK, SHIFT>();
let index = algorithm(self, radix, table, digits);
copy_to_dst(buffer, &mut index_unchecked_mut!(digits[index..]))
}
}
}
)*);
}
radix_impl! { u32 u64 }
impl Radix for u128 {
#[inline(always)]
unsafe fn radix<const FORMAT: u128, const MASK: u128, const SHIFT: i32>(
self,
buffer: &mut [u8],
) -> usize {
// SAFETY: safe as long as buffer is large enough to hold the max value.
// We never read unwritten values, and we never assume the data is initialized.
// Need at least 128-bits, at least as many as the bits in the current type.
let mut digits: mem::MaybeUninit<[u8; 128]> = mem::MaybeUninit::uninit();
unsafe {
let digits = &mut *digits.as_mut_ptr();
let table = get_table::<FORMAT, MASK, SHIFT>();
let index = algorithm_u128::<FORMAT, MASK, SHIFT>(self, table, digits);
copy_to_dst(buffer, &mut index_unchecked_mut!(digits[index..]))
}
}
}