rsa/algorithms/generate.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
//! Generate prime components for the RSA Private Key
use alloc::vec::Vec;
use num_bigint::{BigUint, RandPrime};
#[allow(unused_imports)]
use num_traits::Float;
use num_traits::Zero;
use rand_core::CryptoRngCore;
use crate::{
algorithms::rsa::{compute_modulus, compute_private_exponent_euler_totient},
errors::{Error, Result},
};
pub struct RsaPrivateKeyComponents {
pub n: BigUint,
pub e: BigUint,
pub d: BigUint,
pub primes: Vec<BigUint>,
}
/// Generates a multi-prime RSA keypair of the given bit size, public exponent,
/// and the given random source, as suggested in [1]. Although the public
/// keys are compatible (actually, indistinguishable) from the 2-prime case,
/// the private keys are not. Thus it may not be possible to export multi-prime
/// private keys in certain formats or to subsequently import them into other
/// code.
///
/// Table 1 in [2] suggests maximum numbers of primes for a given size.
///
/// [1]: https://patents.google.com/patent/US4405829A/en
/// [2]: http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
pub(crate) fn generate_multi_prime_key_with_exp<R: CryptoRngCore + ?Sized>(
rng: &mut R,
nprimes: usize,
bit_size: usize,
exp: &BigUint,
) -> Result<RsaPrivateKeyComponents> {
if nprimes < 2 {
return Err(Error::NprimesTooSmall);
}
if bit_size < 64 {
let prime_limit = (1u64 << (bit_size / nprimes) as u64) as f64;
// pi aproximates the number of primes less than prime_limit
let mut pi = prime_limit / (prime_limit.ln() - 1f64);
// Generated primes start with 0b11, so we can only use a quarter of them.
pi /= 4f64;
// Use a factor of two to ensure that key generation terminates in a
// reasonable amount of time.
pi /= 2f64;
if pi < nprimes as f64 {
return Err(Error::TooFewPrimes);
}
}
let mut primes = vec![BigUint::zero(); nprimes];
let n_final: BigUint;
let d_final: BigUint;
'next: loop {
let mut todo = bit_size;
// `gen_prime` should set the top two bits in each prime.
// Thus each prime has the form
// p_i = 2^bitlen(p_i) × 0.11... (in base 2).
// And the product is:
// P = 2^todo × α
// where α is the product of nprimes numbers of the form 0.11...
//
// If α < 1/2 (which can happen for nprimes > 2), we need to
// shift todo to compensate for lost bits: the mean value of 0.11...
// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
// will give good results.
if nprimes >= 7 {
todo += (nprimes - 2) / 5;
}
for (i, prime) in primes.iter_mut().enumerate() {
*prime = rng.gen_prime(todo / (nprimes - i));
todo -= prime.bits();
}
// Makes sure that primes is pairwise unequal.
for (i, prime1) in primes.iter().enumerate() {
for prime2 in primes.iter().take(i) {
if prime1 == prime2 {
continue 'next;
}
}
}
let n = compute_modulus(&primes);
if n.bits() != bit_size {
// This should never happen for nprimes == 2 because
// gen_prime should set the top two bits in each prime.
// For nprimes > 2 we hope it does not happen often.
continue 'next;
}
if let Ok(d) = compute_private_exponent_euler_totient(&primes, exp) {
n_final = n;
d_final = d;
break;
}
}
Ok(RsaPrivateKeyComponents {
n: n_final,
e: exp.clone(),
d: d_final,
primes,
})
}
#[cfg(test)]
mod tests {
use super::*;
use num_bigint::BigUint;
use num_traits::FromPrimitive;
use rand_chacha::{rand_core::SeedableRng, ChaCha8Rng};
const EXP: u64 = 65537;
#[test]
fn test_impossible_keys() {
let mut rng = ChaCha8Rng::from_seed([42; 32]);
let exp = BigUint::from_u64(EXP).expect("invalid static exponent");
for i in 0..32 {
let _ = generate_multi_prime_key_with_exp(&mut rng, 2, i, &exp);
let _ = generate_multi_prime_key_with_exp(&mut rng, 3, i, &exp);
let _ = generate_multi_prime_key_with_exp(&mut rng, 4, i, &exp);
let _ = generate_multi_prime_key_with_exp(&mut rng, 5, i, &exp);
}
}
macro_rules! key_generation {
($name:ident, $multi:expr, $size:expr) => {
#[test]
fn $name() {
let mut rng = ChaCha8Rng::from_seed([42; 32]);
let exp = BigUint::from_u64(EXP).expect("invalid static exponent");
for _ in 0..10 {
let components =
generate_multi_prime_key_with_exp(&mut rng, $multi, $size, &exp).unwrap();
assert_eq!(components.n.bits(), $size);
assert_eq!(components.primes.len(), $multi);
}
}
};
}
key_generation!(key_generation_128, 2, 128);
key_generation!(key_generation_1024, 2, 1024);
key_generation!(key_generation_multi_3_256, 3, 256);
key_generation!(key_generation_multi_4_64, 4, 64);
key_generation!(key_generation_multi_5_64, 5, 64);
key_generation!(key_generation_multi_8_576, 8, 576);
key_generation!(key_generation_multi_16_1024, 16, 1024);
}