use alloc::borrow::Cow;
use alloc::vec::Vec;
use num_bigint::{BigInt, BigUint, IntoBigInt, IntoBigUint, ModInverse, RandBigInt, ToBigInt};
use num_integer::{sqrt, Integer};
use num_traits::{FromPrimitive, One, Pow, Signed, Zero};
use rand_core::CryptoRngCore;
use zeroize::{Zeroize, Zeroizing};
use crate::errors::{Error, Result};
use crate::traits::{PrivateKeyParts, PublicKeyParts};
#[inline]
pub fn rsa_encrypt<K: PublicKeyParts>(key: &K, m: &BigUint) -> Result<BigUint> {
Ok(m.modpow(key.e(), key.n()))
}
#[inline]
pub fn rsa_decrypt<R: CryptoRngCore + ?Sized>(
mut rng: Option<&mut R>,
priv_key: &impl PrivateKeyParts,
c: &BigUint,
) -> Result<BigUint> {
if c >= priv_key.n() {
return Err(Error::Decryption);
}
if priv_key.n().is_zero() {
return Err(Error::Decryption);
}
let mut ir = None;
let c = if let Some(ref mut rng) = rng {
let (blinded, unblinder) = blind(rng, priv_key, c);
ir = Some(unblinder);
Cow::Owned(blinded)
} else {
Cow::Borrowed(c)
};
let dp = priv_key.dp();
let dq = priv_key.dq();
let qinv = priv_key.qinv();
let crt_values = priv_key.crt_values();
let m = match (dp, dq, qinv, crt_values) {
(Some(dp), Some(dq), Some(qinv), Some(crt_values)) => {
let p = &priv_key.primes()[0];
let q = &priv_key.primes()[1];
let mut m = c.modpow(dp, p).into_bigint().unwrap();
let mut m2 = c.modpow(dq, q).into_bigint().unwrap();
m -= &m2;
let mut primes: Vec<_> = priv_key
.primes()
.iter()
.map(ToBigInt::to_bigint)
.map(Option::unwrap)
.collect();
while m.is_negative() {
m += &primes[0];
}
m *= qinv;
m %= &primes[0];
m *= &primes[1];
m += &m2;
let mut c = c.into_owned().into_bigint().unwrap();
for (i, value) in crt_values.iter().enumerate() {
let prime = &primes[2 + i];
m2 = c.modpow(&value.exp, prime);
m2 -= &m;
m2 *= &value.coeff;
m2 %= prime;
while m2.is_negative() {
m2 += prime;
}
m2 *= &value.r;
m += &m2;
}
for prime in primes.iter_mut() {
prime.zeroize();
}
primes.clear();
c.zeroize();
m2.zeroize();
m.into_biguint().expect("failed to decrypt")
}
_ => c.modpow(priv_key.d(), priv_key.n()),
};
match ir {
Some(ref ir) => {
Ok(unblind(priv_key, &m, ir))
}
None => Ok(m),
}
}
#[inline]
pub fn rsa_decrypt_and_check<R: CryptoRngCore + ?Sized>(
priv_key: &impl PrivateKeyParts,
rng: Option<&mut R>,
c: &BigUint,
) -> Result<BigUint> {
let m = rsa_decrypt(rng, priv_key, c)?;
let check = rsa_encrypt(priv_key, &m)?;
if c != &check {
return Err(Error::Internal);
}
Ok(m)
}
fn blind<R: CryptoRngCore, K: PublicKeyParts>(
rng: &mut R,
key: &K,
c: &BigUint,
) -> (BigUint, BigUint) {
let mut r: BigUint;
let mut ir: Option<BigInt>;
let unblinder;
loop {
r = rng.gen_biguint_below(key.n());
if r.is_zero() {
r = BigUint::one();
}
ir = r.clone().mod_inverse(key.n());
if let Some(ir) = ir {
if let Some(ub) = ir.into_biguint() {
unblinder = ub;
break;
}
}
}
let c = {
let mut rpowe = r.modpow(key.e(), key.n()); let mut c = c * &rpowe;
c %= key.n();
rpowe.zeroize();
c
};
(c, unblinder)
}
fn unblind(key: &impl PublicKeyParts, m: &BigUint, unblinder: &BigUint) -> BigUint {
(m * unblinder) % key.n()
}
pub fn recover_primes(n: &BigUint, e: &BigUint, d: &BigUint) -> Result<(BigUint, BigUint)> {
let two = BigUint::from_u8(2).unwrap();
if e <= &two.pow(16u32) || e >= &two.pow(256u32) {
return Err(Error::InvalidArguments);
}
let one = BigUint::one();
let a = Zeroizing::new((d * e - &one) * (n - &one).gcd(&(d * e - &one)));
let m = Zeroizing::new(&*a / n);
let r = Zeroizing::new(&*a - &*m * n);
let modulus_check = Zeroizing::new((n - &*r) % (&*m + &one));
if !modulus_check.is_zero() {
return Err(Error::InvalidArguments);
}
let b = Zeroizing::new((n - &*r) / (&*m + &one) + one);
let four = BigUint::from_u8(4).unwrap();
let four_n = Zeroizing::new(n * four);
let b_squared = Zeroizing::new(b.pow(2u32));
if *b_squared <= *four_n {
return Err(Error::InvalidArguments);
}
let b_squared_minus_four_n = Zeroizing::new(&*b_squared - &*four_n);
let y = Zeroizing::new(sqrt((*b_squared_minus_four_n).clone()));
let y_squared = Zeroizing::new(y.pow(2u32));
let sqrt_is_whole_number = y_squared == b_squared_minus_four_n;
if !sqrt_is_whole_number {
return Err(Error::InvalidArguments);
}
let p = (&*b + &*y) / &two;
let q = (&*b - &*y) / two;
Ok((p, q))
}
pub(crate) fn compute_modulus(primes: &[BigUint]) -> BigUint {
primes.iter().product()
}
#[inline]
pub(crate) fn compute_private_exponent_euler_totient(
primes: &[BigUint],
exp: &BigUint,
) -> Result<BigUint> {
if primes.len() < 2 {
return Err(Error::InvalidPrime);
}
let mut totient = BigUint::one();
for prime in primes {
totient *= prime - BigUint::one();
}
if let Some(d) = exp.mod_inverse(totient) {
Ok(d.to_biguint().unwrap())
} else {
Err(Error::InvalidPrime)
}
}
#[inline]
pub(crate) fn compute_private_exponent_carmicheal(
p: &BigUint,
q: &BigUint,
exp: &BigUint,
) -> Result<BigUint> {
let p1 = p - BigUint::one();
let q1 = q - BigUint::one();
let lcm = p1.lcm(&q1);
if let Some(d) = exp.mod_inverse(lcm) {
Ok(d.to_biguint().unwrap())
} else {
Err(Error::InvalidPrime)
}
}
#[cfg(test)]
mod tests {
use num_traits::FromPrimitive;
use super::*;
#[test]
fn recover_primes_works() {
let n = BigUint::parse_bytes(b"00d397b84d98a4c26138ed1b695a8106ead91d553bf06041b62d3fdc50a041e222b8f4529689c1b82c5e71554f5dd69fa2f4b6158cf0dbeb57811a0fc327e1f28e74fe74d3bc166c1eabdc1b8b57b934ca8be5b00b4f29975bcc99acaf415b59bb28a6782bb41a2c3c2976b3c18dbadef62f00c6bb226640095096c0cc60d22fe7ef987d75c6a81b10d96bf292028af110dc7cc1bbc43d22adab379a0cd5d8078cc780ff5cd6209dea34c922cf784f7717e428d75b5aec8ff30e5f0141510766e2e0ab8d473c84e8710b2b98227c3db095337ad3452f19e2b9bfbccdd8148abf6776fa552775e6e75956e45229ae5a9c46949bab1e622f0e48f56524a84ed3483b", 16).unwrap();
let e = BigUint::from_u64(65537).unwrap();
let d = BigUint::parse_bytes(b"00c4e70c689162c94c660828191b52b4d8392115df486a9adbe831e458d73958320dc1b755456e93701e9702d76fb0b92f90e01d1fe248153281fe79aa9763a92fae69d8d7ecd144de29fa135bd14f9573e349e45031e3b76982f583003826c552e89a397c1a06bd2163488630d92e8c2bb643d7abef700da95d685c941489a46f54b5316f62b5d2c3a7f1bbd134cb37353a44683fdc9d95d36458de22f6c44057fe74a0a436c4308f73f4da42f35c47ac16a7138d483afc91e41dc3a1127382e0c0f5119b0221b4fc639d6b9c38177a6de9b526ebd88c38d7982c07f98a0efd877d508aae275b946915c02e2e1106d175d74ec6777f5e80d12c053d9c7be1e341", 16).unwrap();
let p = BigUint::parse_bytes(b"00f827bbf3a41877c7cc59aebf42ed4b29c32defcb8ed96863d5b090a05a8930dd624a21c9dcf9838568fdfa0df65b8462a5f2ac913d6c56f975532bd8e78fb07bd405ca99a484bcf59f019bbddcb3933f2bce706300b4f7b110120c5df9018159067c35da3061a56c8635a52b54273b31271b4311f0795df6021e6355e1a42e61",16).unwrap();
let q = BigUint::parse_bytes(b"00da4817ce0089dd36f2ade6a3ff410c73ec34bf1b4f6bda38431bfede11cef1f7f6efa70e5f8063a3b1f6e17296ffb15feefa0912a0325b8d1fd65a559e717b5b961ec345072e0ec5203d03441d29af4d64054a04507410cf1da78e7b6119d909ec66e6ad625bf995b279a4b3c5be7d895cd7c5b9c4c497fde730916fcdb4e41b", 16).unwrap();
let (mut p1, mut q1) = recover_primes(&n, &e, &d).unwrap();
if p1 < q1 {
std::mem::swap(&mut p1, &mut q1);
}
assert_eq!(p, p1);
assert_eq!(q, q1);
}
}