rsa/algorithms/
rsa.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
//! Generic RSA implementation

use alloc::borrow::Cow;
use alloc::vec::Vec;
use num_bigint::{BigInt, BigUint, IntoBigInt, IntoBigUint, ModInverse, RandBigInt, ToBigInt};
use num_integer::{sqrt, Integer};
use num_traits::{FromPrimitive, One, Pow, Signed, Zero};
use rand_core::CryptoRngCore;
use zeroize::{Zeroize, Zeroizing};

use crate::errors::{Error, Result};
use crate::traits::{PrivateKeyParts, PublicKeyParts};

/// ⚠️ Raw RSA encryption of m with the public key. No padding is performed.
///
/// # ☢️️ WARNING: HAZARDOUS API ☢️
///
/// Use this function with great care! Raw RSA should never be used without an appropriate padding
/// or signature scheme. See the [module-level documentation][crate::hazmat] for more information.
#[inline]
pub fn rsa_encrypt<K: PublicKeyParts>(key: &K, m: &BigUint) -> Result<BigUint> {
    Ok(m.modpow(key.e(), key.n()))
}

/// ⚠️ Performs raw RSA decryption with no padding or error checking.
///
/// Returns a plaintext `BigUint`. Performs RSA blinding if an `Rng` is passed.
///
/// # ☢️️ WARNING: HAZARDOUS API ☢️
///
/// Use this function with great care! Raw RSA should never be used without an appropriate padding
/// or signature scheme. See the [module-level documentation][crate::hazmat] for more information.
#[inline]
pub fn rsa_decrypt<R: CryptoRngCore + ?Sized>(
    mut rng: Option<&mut R>,
    priv_key: &impl PrivateKeyParts,
    c: &BigUint,
) -> Result<BigUint> {
    if c >= priv_key.n() {
        return Err(Error::Decryption);
    }

    if priv_key.n().is_zero() {
        return Err(Error::Decryption);
    }

    let mut ir = None;

    let c = if let Some(ref mut rng) = rng {
        let (blinded, unblinder) = blind(rng, priv_key, c);
        ir = Some(unblinder);
        Cow::Owned(blinded)
    } else {
        Cow::Borrowed(c)
    };

    let dp = priv_key.dp();
    let dq = priv_key.dq();
    let qinv = priv_key.qinv();
    let crt_values = priv_key.crt_values();

    let m = match (dp, dq, qinv, crt_values) {
        (Some(dp), Some(dq), Some(qinv), Some(crt_values)) => {
            // We have the precalculated values needed for the CRT.

            let p = &priv_key.primes()[0];
            let q = &priv_key.primes()[1];

            let mut m = c.modpow(dp, p).into_bigint().unwrap();
            let mut m2 = c.modpow(dq, q).into_bigint().unwrap();

            m -= &m2;

            let mut primes: Vec<_> = priv_key
                .primes()
                .iter()
                .map(ToBigInt::to_bigint)
                .map(Option::unwrap)
                .collect();

            while m.is_negative() {
                m += &primes[0];
            }
            m *= qinv;
            m %= &primes[0];
            m *= &primes[1];
            m += &m2;

            let mut c = c.into_owned().into_bigint().unwrap();
            for (i, value) in crt_values.iter().enumerate() {
                let prime = &primes[2 + i];
                m2 = c.modpow(&value.exp, prime);
                m2 -= &m;
                m2 *= &value.coeff;
                m2 %= prime;
                while m2.is_negative() {
                    m2 += prime;
                }
                m2 *= &value.r;
                m += &m2;
            }

            // clear tmp values
            for prime in primes.iter_mut() {
                prime.zeroize();
            }
            primes.clear();
            c.zeroize();
            m2.zeroize();

            m.into_biguint().expect("failed to decrypt")
        }
        _ => c.modpow(priv_key.d(), priv_key.n()),
    };

    match ir {
        Some(ref ir) => {
            // unblind
            Ok(unblind(priv_key, &m, ir))
        }
        None => Ok(m),
    }
}

/// ⚠️ Performs raw RSA decryption with no padding.
///
/// Returns a plaintext `BigUint`. Performs RSA blinding if an `Rng` is passed.  This will also
/// check for errors in the CRT computation.
///
/// # ☢️️ WARNING: HAZARDOUS API ☢️
///
/// Use this function with great care! Raw RSA should never be used without an appropriate padding
/// or signature scheme. See the [module-level documentation][crate::hazmat] for more information.
#[inline]
pub fn rsa_decrypt_and_check<R: CryptoRngCore + ?Sized>(
    priv_key: &impl PrivateKeyParts,
    rng: Option<&mut R>,
    c: &BigUint,
) -> Result<BigUint> {
    let m = rsa_decrypt(rng, priv_key, c)?;

    // In order to defend against errors in the CRT computation, m^e is
    // calculated, which should match the original ciphertext.
    let check = rsa_encrypt(priv_key, &m)?;

    if c != &check {
        return Err(Error::Internal);
    }

    Ok(m)
}

/// Returns the blinded c, along with the unblinding factor.
fn blind<R: CryptoRngCore, K: PublicKeyParts>(
    rng: &mut R,
    key: &K,
    c: &BigUint,
) -> (BigUint, BigUint) {
    // Blinding involves multiplying c by r^e.
    // Then the decryption operation performs (m^e * r^e)^d mod n
    // which equals mr mod n. The factor of r can then be removed
    // by multiplying by the multiplicative inverse of r.

    let mut r: BigUint;
    let mut ir: Option<BigInt>;
    let unblinder;
    loop {
        r = rng.gen_biguint_below(key.n());
        if r.is_zero() {
            r = BigUint::one();
        }
        ir = r.clone().mod_inverse(key.n());
        if let Some(ir) = ir {
            if let Some(ub) = ir.into_biguint() {
                unblinder = ub;
                break;
            }
        }
    }

    let c = {
        let mut rpowe = r.modpow(key.e(), key.n()); // N != 0
        let mut c = c * &rpowe;
        c %= key.n();

        rpowe.zeroize();

        c
    };

    (c, unblinder)
}

/// Given an m and and unblinding factor, unblind the m.
fn unblind(key: &impl PublicKeyParts, m: &BigUint, unblinder: &BigUint) -> BigUint {
    (m * unblinder) % key.n()
}

/// The following (deterministic) algorithm also recovers the prime factors `p` and `q` of a modulus `n`, given the
/// public exponent `e` and private exponent `d` using the method described in
/// [NIST 800-56B Appendix C.2](https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf).
pub fn recover_primes(n: &BigUint, e: &BigUint, d: &BigUint) -> Result<(BigUint, BigUint)> {
    // Check precondition
    let two = BigUint::from_u8(2).unwrap();
    if e <= &two.pow(16u32) || e >= &two.pow(256u32) {
        return Err(Error::InvalidArguments);
    }

    // 1. Let a = (de – 1) × GCD(n – 1, de – 1).
    let one = BigUint::one();
    let a = Zeroizing::new((d * e - &one) * (n - &one).gcd(&(d * e - &one)));

    // 2. Let m = floor(a /n) and r = a – m n, so that a = m n + r and 0 ≤ r < n.
    let m = Zeroizing::new(&*a / n);
    let r = Zeroizing::new(&*a - &*m * n);

    // 3. Let b = ( (n – r)/(m + 1) ) + 1; if b is not an integer or b^2 ≤ 4n, then output an error indicator,
    //    and exit without further processing.
    let modulus_check = Zeroizing::new((n - &*r) % (&*m + &one));
    if !modulus_check.is_zero() {
        return Err(Error::InvalidArguments);
    }
    let b = Zeroizing::new((n - &*r) / (&*m + &one) + one);

    let four = BigUint::from_u8(4).unwrap();
    let four_n = Zeroizing::new(n * four);
    let b_squared = Zeroizing::new(b.pow(2u32));
    if *b_squared <= *four_n {
        return Err(Error::InvalidArguments);
    }
    let b_squared_minus_four_n = Zeroizing::new(&*b_squared - &*four_n);

    // 4. Let ϒ be the positive square root of b^2 – 4n; if ϒ is not an integer,
    //    then output an error indicator, and exit without further processing.
    let y = Zeroizing::new(sqrt((*b_squared_minus_four_n).clone()));

    let y_squared = Zeroizing::new(y.pow(2u32));
    let sqrt_is_whole_number = y_squared == b_squared_minus_four_n;
    if !sqrt_is_whole_number {
        return Err(Error::InvalidArguments);
    }
    let p = (&*b + &*y) / &two;
    let q = (&*b - &*y) / two;

    Ok((p, q))
}

/// Compute the modulus of a key from its primes.
pub(crate) fn compute_modulus(primes: &[BigUint]) -> BigUint {
    primes.iter().product()
}

/// Compute the private exponent from its primes (p and q) and public exponent
/// This uses Euler's totient function
#[inline]
pub(crate) fn compute_private_exponent_euler_totient(
    primes: &[BigUint],
    exp: &BigUint,
) -> Result<BigUint> {
    if primes.len() < 2 {
        return Err(Error::InvalidPrime);
    }

    let mut totient = BigUint::one();

    for prime in primes {
        totient *= prime - BigUint::one();
    }

    // NOTE: `mod_inverse` checks if `exp` evenly divides `totient` and returns `None` if so.
    // This ensures that `exp` is not a factor of any `(prime - 1)`.
    if let Some(d) = exp.mod_inverse(totient) {
        Ok(d.to_biguint().unwrap())
    } else {
        // `exp` evenly divides `totient`
        Err(Error::InvalidPrime)
    }
}

/// Compute the private exponent from its primes (p and q) and public exponent
///
/// This is using the method defined by
/// [NIST 800-56B Section 6.2.1](https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br2.pdf#page=47).
/// (Carmichael function)
///
/// FIPS 186-4 **requires** the private exponent to be less than λ(n), which would
/// make Euler's totiem unreliable.
#[inline]
pub(crate) fn compute_private_exponent_carmicheal(
    p: &BigUint,
    q: &BigUint,
    exp: &BigUint,
) -> Result<BigUint> {
    let p1 = p - BigUint::one();
    let q1 = q - BigUint::one();

    let lcm = p1.lcm(&q1);
    if let Some(d) = exp.mod_inverse(lcm) {
        Ok(d.to_biguint().unwrap())
    } else {
        // `exp` evenly divides `lcm`
        Err(Error::InvalidPrime)
    }
}

#[cfg(test)]
mod tests {
    use num_traits::FromPrimitive;

    use super::*;

    #[test]
    fn recover_primes_works() {
        let n = BigUint::parse_bytes(b"00d397b84d98a4c26138ed1b695a8106ead91d553bf06041b62d3fdc50a041e222b8f4529689c1b82c5e71554f5dd69fa2f4b6158cf0dbeb57811a0fc327e1f28e74fe74d3bc166c1eabdc1b8b57b934ca8be5b00b4f29975bcc99acaf415b59bb28a6782bb41a2c3c2976b3c18dbadef62f00c6bb226640095096c0cc60d22fe7ef987d75c6a81b10d96bf292028af110dc7cc1bbc43d22adab379a0cd5d8078cc780ff5cd6209dea34c922cf784f7717e428d75b5aec8ff30e5f0141510766e2e0ab8d473c84e8710b2b98227c3db095337ad3452f19e2b9bfbccdd8148abf6776fa552775e6e75956e45229ae5a9c46949bab1e622f0e48f56524a84ed3483b", 16).unwrap();
        let e = BigUint::from_u64(65537).unwrap();
        let d = BigUint::parse_bytes(b"00c4e70c689162c94c660828191b52b4d8392115df486a9adbe831e458d73958320dc1b755456e93701e9702d76fb0b92f90e01d1fe248153281fe79aa9763a92fae69d8d7ecd144de29fa135bd14f9573e349e45031e3b76982f583003826c552e89a397c1a06bd2163488630d92e8c2bb643d7abef700da95d685c941489a46f54b5316f62b5d2c3a7f1bbd134cb37353a44683fdc9d95d36458de22f6c44057fe74a0a436c4308f73f4da42f35c47ac16a7138d483afc91e41dc3a1127382e0c0f5119b0221b4fc639d6b9c38177a6de9b526ebd88c38d7982c07f98a0efd877d508aae275b946915c02e2e1106d175d74ec6777f5e80d12c053d9c7be1e341", 16).unwrap();
        let p = BigUint::parse_bytes(b"00f827bbf3a41877c7cc59aebf42ed4b29c32defcb8ed96863d5b090a05a8930dd624a21c9dcf9838568fdfa0df65b8462a5f2ac913d6c56f975532bd8e78fb07bd405ca99a484bcf59f019bbddcb3933f2bce706300b4f7b110120c5df9018159067c35da3061a56c8635a52b54273b31271b4311f0795df6021e6355e1a42e61",16).unwrap();
        let q = BigUint::parse_bytes(b"00da4817ce0089dd36f2ade6a3ff410c73ec34bf1b4f6bda38431bfede11cef1f7f6efa70e5f8063a3b1f6e17296ffb15feefa0912a0325b8d1fd65a559e717b5b961ec345072e0ec5203d03441d29af4d64054a04507410cf1da78e7b6119d909ec66e6ad625bf995b279a4b3c5be7d895cd7c5b9c4c497fde730916fcdb4e41b", 16).unwrap();

        let (mut p1, mut q1) = recover_primes(&n, &e, &d).unwrap();

        if p1 < q1 {
            std::mem::swap(&mut p1, &mut q1);
        }
        assert_eq!(p, p1);
        assert_eq!(q, q1);
    }
}