zerocopy/wrappers.rs
1// Copyright 2023 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9use core::{fmt, hash::Hash};
10
11use super::*;
12
13/// A type with no alignment requirement.
14///
15/// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>`
16/// has the same size and bit validity as `T`, but not necessarily the same
17/// alignment [or ABI]. This is useful if a type with an alignment requirement
18/// needs to be read from a chunk of memory which provides no alignment
19/// guarantees.
20///
21/// Since `Unalign` has no alignment requirement, the inner `T` may not be
22/// properly aligned in memory. There are five ways to access the inner `T`:
23/// - by value, using [`get`] or [`into_inner`]
24/// - by reference inside of a callback, using [`update`]
25/// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can
26/// fail if the `Unalign` does not satisfy `T`'s alignment requirement at
27/// runtime
28/// - unsafely by reference, using [`deref_unchecked`] or
29/// [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that
30/// the `Unalign` satisfies `T`'s alignment requirement
31/// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or
32/// [`DerefMut::deref_mut`]
33///
34/// [or ABI]: https://github.com/google/zerocopy/issues/164
35/// [`get`]: Unalign::get
36/// [`into_inner`]: Unalign::into_inner
37/// [`update`]: Unalign::update
38/// [`try_deref`]: Unalign::try_deref
39/// [`try_deref_mut`]: Unalign::try_deref_mut
40/// [`deref_unchecked`]: Unalign::deref_unchecked
41/// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked
42///
43/// # Example
44///
45/// In this example, we need `EthernetFrame` to have no alignment requirement -
46/// and thus implement [`Unaligned`]. `EtherType` is `#[repr(u16)]` and so
47/// cannot implement `Unaligned`. We use `Unalign` to relax `EtherType`'s
48/// alignment requirement so that `EthernetFrame` has no alignment requirement
49/// and can implement `Unaligned`.
50///
51/// ```rust
52/// use zerocopy::*;
53/// # use zerocopy_derive::*;
54/// # #[derive(FromBytes, KnownLayout, Immutable, Unaligned)] #[repr(C)] struct Mac([u8; 6]);
55///
56/// # #[derive(PartialEq, Copy, Clone, Debug)]
57/// #[derive(TryFromBytes, KnownLayout, Immutable)]
58/// #[repr(u16)]
59/// enum EtherType {
60/// Ipv4 = 0x0800u16.to_be(),
61/// Arp = 0x0806u16.to_be(),
62/// Ipv6 = 0x86DDu16.to_be(),
63/// # /*
64/// ...
65/// # */
66/// }
67///
68/// #[derive(TryFromBytes, KnownLayout, Immutable, Unaligned)]
69/// #[repr(C)]
70/// struct EthernetFrame {
71/// src: Mac,
72/// dst: Mac,
73/// ethertype: Unalign<EtherType>,
74/// payload: [u8],
75/// }
76///
77/// let bytes = &[
78/// # 0, 1, 2, 3, 4, 5,
79/// # 6, 7, 8, 9, 10, 11,
80/// # /*
81/// ...
82/// # */
83/// 0x86, 0xDD, // EtherType
84/// 0xDE, 0xAD, 0xBE, 0xEF // Payload
85/// ][..];
86///
87/// // PANICS: Guaranteed not to panic because `bytes` is of the right
88/// // length, has the right contents, and `EthernetFrame` has no
89/// // alignment requirement.
90/// let packet = EthernetFrame::try_ref_from_bytes(&bytes).unwrap();
91///
92/// assert_eq!(packet.ethertype.get(), EtherType::Ipv6);
93/// assert_eq!(packet.payload, [0xDE, 0xAD, 0xBE, 0xEF]);
94/// ```
95///
96/// # Safety
97///
98/// `Unalign<T>` is guaranteed to have the same size and bit validity as `T`,
99/// and to have [`UnsafeCell`]s covering the same byte ranges as `T`.
100/// `Unalign<T>` is guaranteed to have alignment 1.
101// NOTE: This type is sound to use with types that need to be dropped. The
102// reason is that the compiler-generated drop code automatically moves all
103// values to aligned memory slots before dropping them in-place. This is not
104// well-documented, but it's hinted at in places like [1] and [2]. However, this
105// also means that `T` must be `Sized`; unless something changes, we can never
106// support unsized `T`. [3]
107//
108// [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646
109// [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323
110// [3] https://github.com/google/zerocopy/issues/209
111#[allow(missing_debug_implementations)]
112#[derive(Default, Copy)]
113#[cfg_attr(any(feature = "derive", test), derive(Immutable, FromBytes, IntoBytes, Unaligned))]
114#[repr(C, packed)]
115pub struct Unalign<T>(T);
116
117// We do not use `derive(KnownLayout)` on `Unalign`, because the derive is not
118// smart enough to realize that `Unalign<T>` is always sized and thus emits a
119// `KnownLayout` impl bounded on `T: KnownLayout.` This is overly restrictive.
120impl_known_layout!(T => Unalign<T>);
121
122// FIXME(https://github.com/rust-lang/rust-clippy/issues/16087): Move these
123// attributes below the comment once this Clippy bug is fixed.
124#[cfg_attr(
125 all(__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS, any(feature = "derive", test)),
126 expect(unused_unsafe)
127)]
128#[cfg_attr(
129 all(
130 not(__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS),
131 any(feature = "derive", test)
132 ),
133 allow(unused_unsafe)
134)]
135// SAFETY:
136// - `Unalign<T>` promises to have alignment 1, and so we don't require that `T:
137// Unaligned`.
138// - `Unalign<T>` has the same bit validity as `T`, and so it is `FromZeros`,
139// `FromBytes`, or `IntoBytes` exactly when `T` is as well.
140// - `Immutable`: `Unalign<T>` has the same fields as `T`, so it contains
141// `UnsafeCell`s exactly when `T` does.
142// - `TryFromBytes`: `Unalign<T>` has the same the same bit validity as `T`, so
143// `T::is_bit_valid` is a sound implementation of `is_bit_valid`.
144//
145#[allow(clippy::multiple_unsafe_ops_per_block)]
146const _: () = unsafe {
147 impl_or_verify!(T => Unaligned for Unalign<T>);
148 impl_or_verify!(T: Immutable => Immutable for Unalign<T>);
149 impl_or_verify!(
150 T: TryFromBytes => TryFromBytes for Unalign<T>;
151 |c| T::is_bit_valid(c.transmute())
152 );
153 impl_or_verify!(T: FromZeros => FromZeros for Unalign<T>);
154 impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>);
155 impl_or_verify!(T: IntoBytes => IntoBytes for Unalign<T>);
156};
157
158// Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be
159// aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound
160// is not sufficient to implement `Clone` for `Unalign`.
161impl<T: Copy> Clone for Unalign<T> {
162 #[inline(always)]
163 fn clone(&self) -> Unalign<T> {
164 *self
165 }
166}
167
168impl<T> Unalign<T> {
169 /// Constructs a new `Unalign`.
170 #[inline(always)]
171 pub const fn new(val: T) -> Unalign<T> {
172 Unalign(val)
173 }
174
175 /// Consumes `self`, returning the inner `T`.
176 #[inline(always)]
177 pub const fn into_inner(self) -> T {
178 // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same size
179 // and bit validity as `T`.
180 //
181 // We do this instead of just destructuring in order to prevent
182 // `Unalign`'s `Drop::drop` from being run, since dropping is not
183 // supported in `const fn`s.
184 //
185 // FIXME(https://github.com/rust-lang/rust/issues/73255): Destructure
186 // instead of using unsafe.
187 unsafe { crate::util::transmute_unchecked(self) }
188 }
189
190 /// Attempts to return a reference to the wrapped `T`, failing if `self` is
191 /// not properly aligned.
192 ///
193 /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
194 /// `Err`.
195 ///
196 /// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers
197 /// may prefer [`Deref::deref`], which is infallible.
198 #[inline(always)]
199 pub fn try_deref(&self) -> Result<&T, AlignmentError<&Self, T>> {
200 let inner = Ptr::from_ref(self).transmute();
201 match inner.try_into_aligned() {
202 Ok(aligned) => Ok(aligned.as_ref()),
203 Err(err) => Err(err.map_src(|src| src.into_unalign().as_ref())),
204 }
205 }
206
207 /// Attempts to return a mutable reference to the wrapped `T`, failing if
208 /// `self` is not properly aligned.
209 ///
210 /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
211 /// `Err`.
212 ///
213 /// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and
214 /// callers may prefer [`DerefMut::deref_mut`], which is infallible.
215 #[inline(always)]
216 pub fn try_deref_mut(&mut self) -> Result<&mut T, AlignmentError<&mut Self, T>> {
217 let inner = Ptr::from_mut(self).transmute::<_, _, (_, (_, _))>();
218 match inner.try_into_aligned() {
219 Ok(aligned) => Ok(aligned.as_mut()),
220 Err(err) => Err(err.map_src(|src| src.into_unalign().as_mut())),
221 }
222 }
223
224 /// Returns a reference to the wrapped `T` without checking alignment.
225 ///
226 /// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers
227 /// may prefer [`Deref::deref`], which is safe.
228 ///
229 /// # Safety
230 ///
231 /// The caller must guarantee that `self` satisfies `align_of::<T>()`.
232 #[inline(always)]
233 pub const unsafe fn deref_unchecked(&self) -> &T {
234 // SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T`
235 // at the same memory location as `self`. It has no alignment guarantee,
236 // but the caller has promised that `self` is properly aligned, so we
237 // know that it is sound to create a reference to `T` at this memory
238 // location.
239 //
240 // We use `mem::transmute` instead of `&*self.get_ptr()` because
241 // dereferencing pointers is not stable in `const` on our current MSRV
242 // (1.56 as of this writing).
243 unsafe { mem::transmute(self) }
244 }
245
246 /// Returns a mutable reference to the wrapped `T` without checking
247 /// alignment.
248 ///
249 /// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and
250 /// callers may prefer [`DerefMut::deref_mut`], which is safe.
251 ///
252 /// # Safety
253 ///
254 /// The caller must guarantee that `self` satisfies `align_of::<T>()`.
255 #[inline(always)]
256 pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T {
257 // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at
258 // the same memory location as `self`. It has no alignment guarantee,
259 // but the caller has promised that `self` is properly aligned, so we
260 // know that the pointer itself is aligned, and thus that it is sound to
261 // create a reference to a `T` at this memory location.
262 unsafe { &mut *self.get_mut_ptr() }
263 }
264
265 /// Gets an unaligned raw pointer to the inner `T`.
266 ///
267 /// # Safety
268 ///
269 /// The returned raw pointer is not necessarily aligned to
270 /// `align_of::<T>()`. Most functions which operate on raw pointers require
271 /// those pointers to be aligned, so calling those functions with the result
272 /// of `get_ptr` will result in undefined behavior if alignment is not
273 /// guaranteed using some out-of-band mechanism. In general, the only
274 /// functions which are safe to call with this pointer are those which are
275 /// explicitly documented as being sound to use with an unaligned pointer,
276 /// such as [`read_unaligned`].
277 ///
278 /// Even if the caller is permitted to mutate `self` (e.g. they have
279 /// ownership or a mutable borrow), it is not guaranteed to be sound to
280 /// write through the returned pointer. If writing is required, prefer
281 /// [`get_mut_ptr`] instead.
282 ///
283 /// [`read_unaligned`]: core::ptr::read_unaligned
284 /// [`get_mut_ptr`]: Unalign::get_mut_ptr
285 #[inline(always)]
286 pub const fn get_ptr(&self) -> *const T {
287 ptr::addr_of!(self.0)
288 }
289
290 /// Gets an unaligned mutable raw pointer to the inner `T`.
291 ///
292 /// # Safety
293 ///
294 /// The returned raw pointer is not necessarily aligned to
295 /// `align_of::<T>()`. Most functions which operate on raw pointers require
296 /// those pointers to be aligned, so calling those functions with the result
297 /// of `get_ptr` will result in undefined behavior if alignment is not
298 /// guaranteed using some out-of-band mechanism. In general, the only
299 /// functions which are safe to call with this pointer are those which are
300 /// explicitly documented as being sound to use with an unaligned pointer,
301 /// such as [`read_unaligned`].
302 ///
303 /// [`read_unaligned`]: core::ptr::read_unaligned
304 // FIXME(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
305 #[inline(always)]
306 pub fn get_mut_ptr(&mut self) -> *mut T {
307 ptr::addr_of_mut!(self.0)
308 }
309
310 /// Sets the inner `T`, dropping the previous value.
311 // FIXME(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
312 #[inline(always)]
313 pub fn set(&mut self, t: T) {
314 *self = Unalign::new(t);
315 }
316
317 /// Updates the inner `T` by calling a function on it.
318 ///
319 /// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that
320 /// impl should be preferred over this method when performing updates, as it
321 /// will usually be faster and more ergonomic.
322 ///
323 /// For large types, this method may be expensive, as it requires copying
324 /// `2 * size_of::<T>()` bytes. \[1\]
325 ///
326 /// \[1\] Since the inner `T` may not be aligned, it would not be sound to
327 /// invoke `f` on it directly. Instead, `update` moves it into a
328 /// properly-aligned location in the local stack frame, calls `f` on it, and
329 /// then moves it back to its original location in `self`.
330 ///
331 /// [`T: Unaligned`]: Unaligned
332 #[inline]
333 pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O {
334 if mem::align_of::<T>() == 1 {
335 // While we advise callers to use `DerefMut` when `T: Unaligned`,
336 // not all callers will be able to guarantee `T: Unaligned` in all
337 // cases. In particular, callers who are themselves providing an API
338 // which is generic over `T` may sometimes be called by *their*
339 // callers with `T` such that `align_of::<T>() == 1`, but cannot
340 // guarantee this in the general case. Thus, this optimization may
341 // sometimes be helpful.
342
343 // SAFETY: Since `T`'s alignment is 1, `self` satisfies its
344 // alignment by definition.
345 let t = unsafe { self.deref_mut_unchecked() };
346 return f(t);
347 }
348
349 // On drop, this moves `copy` out of itself and uses `ptr::write` to
350 // overwrite `slf`.
351 struct WriteBackOnDrop<T> {
352 copy: ManuallyDrop<T>,
353 slf: *mut Unalign<T>,
354 }
355
356 impl<T> Drop for WriteBackOnDrop<T> {
357 fn drop(&mut self) {
358 // SAFETY: We never use `copy` again as required by
359 // `ManuallyDrop::take`.
360 let copy = unsafe { ManuallyDrop::take(&mut self.copy) };
361 // SAFETY: `slf` is the raw pointer value of `self`. We know it
362 // is valid for writes and properly aligned because `self` is a
363 // mutable reference, which guarantees both of these properties.
364 unsafe { ptr::write(self.slf, Unalign::new(copy)) };
365 }
366 }
367
368 // SAFETY: We know that `self` is valid for reads, properly aligned, and
369 // points to an initialized `Unalign<T>` because it is a mutable
370 // reference, which guarantees all of these properties.
371 //
372 // Since `T: !Copy`, it would be unsound in the general case to allow
373 // both the original `Unalign<T>` and the copy to be used by safe code.
374 // We guarantee that the copy is used to overwrite the original in the
375 // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is
376 // called before any other safe code executes, soundness is upheld.
377 // While this method can terminate in two ways (by returning normally or
378 // by unwinding due to a panic in `f`), in both cases, `write_back` is
379 // dropped - and its `drop` called - before any other safe code can
380 // execute.
381 let copy = unsafe { ptr::read(self) }.into_inner();
382 let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self };
383
384 let ret = f(&mut write_back.copy);
385
386 drop(write_back);
387 ret
388 }
389}
390
391impl<T: Copy> Unalign<T> {
392 /// Gets a copy of the inner `T`.
393 // FIXME(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
394 #[inline(always)]
395 pub fn get(&self) -> T {
396 let Unalign(val) = *self;
397 val
398 }
399}
400
401impl<T: Unaligned> Deref for Unalign<T> {
402 type Target = T;
403
404 #[inline(always)]
405 fn deref(&self) -> &T {
406 Ptr::from_ref(self).transmute().bikeshed_recall_aligned().as_ref()
407 }
408}
409
410impl<T: Unaligned> DerefMut for Unalign<T> {
411 #[inline(always)]
412 fn deref_mut(&mut self) -> &mut T {
413 Ptr::from_mut(self).transmute::<_, _, (_, (_, _))>().bikeshed_recall_aligned().as_mut()
414 }
415}
416
417impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> {
418 #[inline(always)]
419 fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> {
420 PartialOrd::partial_cmp(self.deref(), other.deref())
421 }
422}
423
424impl<T: Unaligned + Ord> Ord for Unalign<T> {
425 #[inline(always)]
426 fn cmp(&self, other: &Unalign<T>) -> Ordering {
427 Ord::cmp(self.deref(), other.deref())
428 }
429}
430
431impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> {
432 #[inline(always)]
433 fn eq(&self, other: &Unalign<T>) -> bool {
434 PartialEq::eq(self.deref(), other.deref())
435 }
436}
437
438impl<T: Unaligned + Eq> Eq for Unalign<T> {}
439
440impl<T: Unaligned + Hash> Hash for Unalign<T> {
441 #[inline(always)]
442 fn hash<H>(&self, state: &mut H)
443 where
444 H: Hasher,
445 {
446 self.deref().hash(state);
447 }
448}
449
450impl<T: Unaligned + Debug> Debug for Unalign<T> {
451 #[inline(always)]
452 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
453 Debug::fmt(self.deref(), f)
454 }
455}
456
457impl<T: Unaligned + Display> Display for Unalign<T> {
458 #[inline(always)]
459 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
460 Display::fmt(self.deref(), f)
461 }
462}
463
464/// A wrapper type to construct uninitialized instances of `T`.
465///
466/// `MaybeUninit` is identical to the [standard library
467/// `MaybeUninit`][core-maybe-uninit] type except that it supports unsized
468/// types.
469///
470/// # Layout
471///
472/// The same layout guarantees and caveats apply to `MaybeUninit<T>` as apply to
473/// the [standard library `MaybeUninit`][core-maybe-uninit] with one exception:
474/// for `T: !Sized`, there is no single value for `T`'s size. Instead, for such
475/// types, the following are guaranteed:
476/// - Every [valid size][valid-size] for `T` is a valid size for
477/// `MaybeUninit<T>` and vice versa
478/// - Given `t: *const T` and `m: *const MaybeUninit<T>` with identical fat
479/// pointer metadata, `t` and `m` address the same number of bytes (and
480/// likewise for `*mut`)
481///
482/// [core-maybe-uninit]: core::mem::MaybeUninit
483/// [valid-size]: crate::KnownLayout#what-is-a-valid-size
484#[repr(transparent)]
485#[doc(hidden)]
486pub struct MaybeUninit<T: ?Sized + KnownLayout>(
487 // SAFETY: `MaybeUninit<T>` has the same size as `T`, because (by invariant
488 // on `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
489 // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
490 // accurately reflects the layout of `T`. By invariant on `T::MaybeUninit`,
491 // it admits uninitialized bytes in all positions. Because `MaybeUninit` is
492 // marked `repr(transparent)`, these properties additionally hold true for
493 // `Self`.
494 T::MaybeUninit,
495);
496
497#[doc(hidden)]
498impl<T: ?Sized + KnownLayout> MaybeUninit<T> {
499 /// Constructs a `MaybeUninit<T>` initialized with the given value.
500 #[inline(always)]
501 pub fn new(val: T) -> Self
502 where
503 T: Sized,
504 Self: Sized,
505 {
506 // SAFETY: It is valid to transmute `val` to `MaybeUninit<T>` because it
507 // is both valid to transmute `val` to `T::MaybeUninit`, and it is valid
508 // to transmute from `T::MaybeUninit` to `MaybeUninit<T>`.
509 //
510 // First, it is valid to transmute `val` to `T::MaybeUninit` because, by
511 // invariant on `T::MaybeUninit`:
512 // - For `T: Sized`, `T` and `T::MaybeUninit` have the same size.
513 // - All byte sequences of the correct size are valid values of
514 // `T::MaybeUninit`.
515 //
516 // Second, it is additionally valid to transmute from `T::MaybeUninit`
517 // to `MaybeUninit<T>`, because `MaybeUninit<T>` is a
518 // `repr(transparent)` wrapper around `T::MaybeUninit`.
519 //
520 // These two transmutes are collapsed into one so we don't need to add a
521 // `T::MaybeUninit: Sized` bound to this function's `where` clause.
522 unsafe { crate::util::transmute_unchecked(val) }
523 }
524
525 /// Constructs an uninitialized `MaybeUninit<T>`.
526 #[must_use]
527 #[inline(always)]
528 pub fn uninit() -> Self
529 where
530 T: Sized,
531 Self: Sized,
532 {
533 let uninit = CoreMaybeUninit::<T>::uninit();
534 // SAFETY: It is valid to transmute from `CoreMaybeUninit<T>` to
535 // `MaybeUninit<T>` since they both admit uninitialized bytes in all
536 // positions, and they have the same size (i.e., that of `T`).
537 //
538 // `MaybeUninit<T>` has the same size as `T`, because (by invariant on
539 // `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
540 // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
541 // accurately reflects the layout of `T`.
542 //
543 // `CoreMaybeUninit<T>` has the same size as `T` [1] and admits
544 // uninitialized bytes in all positions.
545 //
546 // [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1:
547 //
548 // `MaybeUninit<T>` is guaranteed to have the same size, alignment,
549 // and ABI as `T`
550 unsafe { crate::util::transmute_unchecked(uninit) }
551 }
552
553 /// Creates a `Box<MaybeUninit<T>>`.
554 ///
555 /// This function is useful for allocating large, uninit values on the heap
556 /// without ever creating a temporary instance of `Self` on the stack.
557 ///
558 /// # Errors
559 ///
560 /// Returns an error on allocation failure. Allocation failure is guaranteed
561 /// never to cause a panic or an abort.
562 #[cfg(feature = "alloc")]
563 #[inline]
564 pub fn new_boxed_uninit(meta: T::PointerMetadata) -> Result<Box<Self>, AllocError> {
565 // SAFETY: `alloc::alloc::alloc_zeroed` is a valid argument of
566 // `new_box`. The referent of the pointer returned by `alloc` (and,
567 // consequently, the `Box` derived from it) is a valid instance of
568 // `Self`, because `Self` is `MaybeUninit` and thus admits arbitrary
569 // (un)initialized bytes.
570 unsafe { crate::util::new_box(meta, alloc::alloc::alloc) }
571 }
572
573 /// Extracts the value from the `MaybeUninit<T>` container.
574 ///
575 /// # Safety
576 ///
577 /// The caller must ensure that `self` is in an bit-valid state. Depending
578 /// on subsequent use, it may also need to be in a library-valid state.
579 #[inline(always)]
580 pub unsafe fn assume_init(self) -> T
581 where
582 T: Sized,
583 Self: Sized,
584 {
585 // SAFETY: The caller guarantees that `self` is in an bit-valid state.
586 unsafe { crate::util::transmute_unchecked(self) }
587 }
588}
589
590impl<T: ?Sized + KnownLayout> fmt::Debug for MaybeUninit<T> {
591 #[inline]
592 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
593 f.pad(core::any::type_name::<Self>())
594 }
595}
596
597#[cfg(test)]
598mod tests {
599 use core::panic::AssertUnwindSafe;
600
601 use super::*;
602 use crate::util::testutil::*;
603
604 #[test]
605 fn test_unalign() {
606 // Test methods that don't depend on alignment.
607 let mut u = Unalign::new(AU64(123));
608 assert_eq!(u.get(), AU64(123));
609 assert_eq!(u.into_inner(), AU64(123));
610 assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u));
611 assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u));
612 u.set(AU64(321));
613 assert_eq!(u.get(), AU64(321));
614
615 // Test methods that depend on alignment (when alignment is satisfied).
616 let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
617 assert_eq!(u.t.try_deref().unwrap(), &AU64(123));
618 assert_eq!(u.t.try_deref_mut().unwrap(), &mut AU64(123));
619 // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
620 assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123));
621 // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
622 assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123));
623 *u.t.try_deref_mut().unwrap() = AU64(321);
624 assert_eq!(u.t.get(), AU64(321));
625
626 // Test methods that depend on alignment (when alignment is not
627 // satisfied).
628 let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123)));
629 assert!(matches!(u.t.try_deref(), Err(AlignmentError { .. })));
630 assert!(matches!(u.t.try_deref_mut(), Err(AlignmentError { .. })));
631
632 // Test methods that depend on `T: Unaligned`.
633 let mut u = Unalign::new(123u8);
634 assert_eq!(u.try_deref(), Ok(&123));
635 assert_eq!(u.try_deref_mut(), Ok(&mut 123));
636 assert_eq!(u.deref(), &123);
637 assert_eq!(u.deref_mut(), &mut 123);
638 *u = 21;
639 assert_eq!(u.get(), 21);
640
641 // Test that some `Unalign` functions and methods are `const`.
642 const _UNALIGN: Unalign<u64> = Unalign::new(0);
643 const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr();
644 const _U64: u64 = _UNALIGN.into_inner();
645 // Make sure all code is considered "used".
646 //
647 // FIXME(https://github.com/rust-lang/rust/issues/104084): Remove this
648 // attribute.
649 #[allow(dead_code)]
650 const _: () = {
651 let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
652 // Make sure that `deref_unchecked` is `const`.
653 //
654 // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
655 let au64 = unsafe { x.t.deref_unchecked() };
656 match au64 {
657 AU64(123) => {}
658 _ => const_unreachable!(),
659 }
660 };
661 }
662
663 #[test]
664 fn test_unalign_update() {
665 let mut u = Unalign::new(AU64(123));
666 u.update(|a| a.0 += 1);
667 assert_eq!(u.get(), AU64(124));
668
669 // Test that, even if the callback panics, the original is still
670 // correctly overwritten. Use a `Box` so that Miri is more likely to
671 // catch any unsoundness (which would likely result in two `Box`es for
672 // the same heap object, which is the sort of thing that Miri would
673 // probably catch).
674 let mut u = Unalign::new(Box::new(AU64(123)));
675 let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
676 u.update(|a| {
677 a.0 += 1;
678 panic!();
679 })
680 }));
681 assert!(res.is_err());
682 assert_eq!(u.into_inner(), Box::new(AU64(124)));
683
684 // Test the align_of::<T>() == 1 optimization.
685 let mut u = Unalign::new([0u8, 1]);
686 u.update(|a| a[0] += 1);
687 assert_eq!(u.get(), [1u8, 1]);
688 }
689
690 #[test]
691 fn test_unalign_copy_clone() {
692 // Test that `Copy` and `Clone` do not cause soundness issues. This test
693 // is mainly meant to exercise UB that would be caught by Miri.
694
695 // `u.t` is definitely not validly-aligned for `AU64`'s alignment of 8.
696 let u = ForceUnalign::<_, AU64>::new(Unalign::new(AU64(123)));
697 #[allow(clippy::clone_on_copy)]
698 let v = u.t.clone();
699 let w = u.t;
700 assert_eq!(u.t.get(), v.get());
701 assert_eq!(u.t.get(), w.get());
702 assert_eq!(v.get(), w.get());
703 }
704
705 #[test]
706 fn test_unalign_trait_impls() {
707 let zero = Unalign::new(0u8);
708 let one = Unalign::new(1u8);
709
710 assert!(zero < one);
711 assert_eq!(PartialOrd::partial_cmp(&zero, &one), Some(Ordering::Less));
712 assert_eq!(Ord::cmp(&zero, &one), Ordering::Less);
713
714 assert_ne!(zero, one);
715 assert_eq!(zero, zero);
716 assert!(!PartialEq::eq(&zero, &one));
717 assert!(PartialEq::eq(&zero, &zero));
718
719 fn hash<T: Hash>(t: &T) -> u64 {
720 let mut h = std::collections::hash_map::DefaultHasher::new();
721 t.hash(&mut h);
722 h.finish()
723 }
724
725 assert_eq!(hash(&zero), hash(&0u8));
726 assert_eq!(hash(&one), hash(&1u8));
727
728 assert_eq!(format!("{:?}", zero), format!("{:?}", 0u8));
729 assert_eq!(format!("{:?}", one), format!("{:?}", 1u8));
730 assert_eq!(format!("{}", zero), format!("{}", 0u8));
731 assert_eq!(format!("{}", one), format!("{}", 1u8));
732 }
733
734 #[test]
735 #[allow(clippy::as_conversions)]
736 fn test_maybe_uninit() {
737 // int
738 {
739 let input = 42;
740 let uninit = MaybeUninit::new(input);
741 // SAFETY: `uninit` is in an initialized state
742 let output = unsafe { uninit.assume_init() };
743 assert_eq!(input, output);
744 }
745
746 // thin ref
747 {
748 let input = 42;
749 let uninit = MaybeUninit::new(&input);
750 // SAFETY: `uninit` is in an initialized state
751 let output = unsafe { uninit.assume_init() };
752 assert_eq!(&input as *const _, output as *const _);
753 assert_eq!(input, *output);
754 }
755
756 // wide ref
757 {
758 let input = [1, 2, 3, 4];
759 let uninit = MaybeUninit::new(&input[..]);
760 // SAFETY: `uninit` is in an initialized state
761 let output = unsafe { uninit.assume_init() };
762 assert_eq!(&input[..] as *const _, output as *const _);
763 assert_eq!(input, *output);
764 }
765 }
766}